CHANGING SUBJECT OF A FORMULA

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

17	$f = \frac{4d+3}{d+3}$	M1	for clearing the fraction eg $d(f-4) = 3(1-f)$ or $df-4d=3-3f$	Condone error in expansion of RHS for this mark
		M1	(dep M1) for isolating f terms in a correct equation eg $df + 3f = 3 + 4d$	
		M1	(dep on two terms in f) for factorising $eg f(d+3) = 3 + 4d$	
		A1	oe	

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

2.

15	$m = \frac{f+4}{c}$	Ml	for multiplying both sides by $m-1$, eg. $f(m-1) = 3m+4$	Condone missing brackets for this mark only
	f-3	Ml	(dep) for a method to rearrange the formula to isolate terms in m in a correct equation, eg. $fm - 3m = f + 4$ or $-fm + 3m = -f - 4$	
		Al	for $m = \frac{f+4}{f-3}$ oe, eg $m = \frac{-f-4}{-f+3}$	

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

3.

2	(a)	6 or -6	M1	for $12^2 + 2 \times -3 \times 18 = 36$	Terms may be partially evaluated.
			A1	for 6 or -6, accept ±6	Only one value is required for full marks
	(b)	$s = \frac{v^2 - u^2}{2a}$	M1	for subtracting u^2 from both sides or dividing all terms by $2a$ as the first step	Must see this step carried out, not just the intention shown
			A1	$s = \frac{v^2 - u^2}{2a} \text{ oe}$	

Pearson Edexcel - Tuesday 13 June 2017 - Paper 3 (Calculator) Higher Tier

14 (a)	$\frac{x+4}{2x+3}$	M1 M1 A1	Factorising the denominator $(2x \pm 3)(x \pm 4)$ or $2(x \pm 1\frac{1}{2})(x \pm 4)$ Factorising the numerator $(x - 4)(x + 4)$ oe
(b)	$v = \frac{15t}{w + 30}$	M1 M1 A1	A correct step towards solution e.g. expanding brackets to get $15t - 30v$ or multiply both sides by v For a method to rearrange the formula to isolate terms in $v \in vw + 30v = 15t$ oe

Pearson Edexcel - Specimen Papers Set 2 - Paper 3 (Calculator) Higher Tier

5.

3		t = 3(y + 2a)	M1	adding 2a to both sides or multiplying each term
				by 3
			Al	t = 3(y + 2a) or $t = 3y + 6a$

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

6.

13	$\sqrt[3]{4m^2-1}$	M1	clear fractions or remove sq rt sign as first step
	or	M1	(dep) clear fractions and remove sq rt sign
	$\sqrt[3]{(2m+1)(2m-1)}$	A1	$(k=)\sqrt[3]{4m^2-1}$ or $\sqrt[3]{(2m+1)(2m-1)}$

Pearson Edexcel - Specimen Papers Set 1 - Paper 2 (Calculator) Higher Tier

7.

1	$t = \frac{w - 11}{3}$	M1 A1	For isolating term in t, eg. $3t = w - 11$ or dividing all terms by 3, eg. $\frac{w}{3} = \frac{3t}{3} + \frac{11}{3}$ for $t = \frac{w - 11}{3}$ oe

Pearson Edexcel - Sample Paper 1 - (Non-Calculator) Higher Tier

8.

17	$a = \frac{7 - 3r}{r - 2}$	M1	Remove fraction and expand brackets
	7 – 2	M1	Isolate terms in a
		A1	

Pearson Edexcel - Thursday 9 June 2016 - Paper 2 (Calculator) Higher Tier

9.

18	(a)	Ü	$10a^{5}b^{4}$	2	B2 cao (B1 for any two of 10 , a^5 , b^4 in a product)
	(b)		$y = 5p^2 - x$	3	M1 for a correct first step to either remove the square root, eg. $p^2 = \frac{x+y}{5}$ or clear the fraction, eg. $\sqrt{5}p = \sqrt{x+y}$ M1 (dep) for a method to remove the square root and a method to clear the fraction, eg. $5p^2 = x+y$ A1 for $y = 5p^2 - x$

Pearson Edexcel - Wednesday 4 November 2015 - Paper 1 (Non-Calculator) Higher Tier

21	(a)	$\frac{9x-8}{x(2-x)}$	3	M1 for method to use a common denominator, e.g. $\frac{5(x)-4(2-x)}{x(2-x)}$
				M1 (dep on M1) for correct expansion of brackets and combination of numerators e.g. $5x-8+4x$ (=9 $x-8$) A1 for $\frac{9x-8}{x(2-x)}$ or $\frac{9x-8}{2x-x^2}$
	(b)	$y = \frac{2 - 2t}{t + 3}$	4	M1 for intention to multiply both sides by $y + 2$ as a first step e.g. $t \times y + 2 = 2 - 3y$ M1 for intention to correctly isolate their y terms on one side and the other terms on the other side, e.g. $ty+3y=2-2t$ M1 for intention to factorise, e.g. $y(t+3)$ (=2-2 t) A1 for $y = \frac{2-2t}{t+3}$ oe

Pearson Edexcel - Friday 6 November 2015 - Paper 2 (Calculator) Higher Tier

11.

11	(a)	±7	2	M1 for intent to divide both sides by 3 as a first step or answer of 7 or $^{-7}$ A1 ± 7
	(b)	$0.125 \text{ or } \frac{1}{8}$	1	B1 cao
	(c)	27x ⁶	2	M1 for either 27 or x^6 in a two term product A1 cao
	(d)	$p = \frac{w + 16}{4}$	2	M1 for \div 4 throughout or adding 16 to both sides as a first step A1 $p = \frac{w+16}{4}$ oe

Pearson Edexcel - Thursday 4 June 2015 - Paper 1 (Non-Calculator) Higher Tier

12.

20			$a = \frac{4p - 5}{3 + p}$ or	4	M1 for multiplying both sides by $4-a$ as the first step M1 (dep) for isolating their two terms in a M1 (dep) for factorising their two term expression in a A1 for $a = \frac{4p-5}{3+p}$ or $a = \frac{5-4p}{-p-3}$
----	--	--	-------------------------------	---	---

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

22	(a)	$\frac{(2x-3)(x-1)}{(x+6)(x-1)}$	$\frac{2x-3}{x+6}$	3	M1 for $(2x-3)(x-1)$ M1 for $(x+6)(x-1)$ A1 cao
	(b)	$\frac{mb - tv}{vb} = \frac{m - t}{R}$ $mbR - tvR = mvb - tvb$ $mbR - mvb = tvR - tvb$ $m(bR - vb) = tvR - tvb$ OR $\frac{m}{v} - \frac{t}{b} = \frac{m}{R} - \frac{t}{R}$ $\frac{m}{v} - \frac{m}{R} = \frac{t}{b} - \frac{t}{R}$ $\frac{mR - mv}{vR} = \frac{tR - tb}{bR}$ $\frac{m(R - v)}{vR} = \frac{tR - tb}{bR}$	$m = \frac{tv(R - b)}{b(R - v)}$	4	M1 for putting LHS over a common denominator with at least one correct numerator (ignore signs) or for showing an intention to multiply each term on both sides by R or v or b M1 for rearranging correctly to isolate terms in m M1 for factorising with common factor m from 2 terms A1 for $m = \frac{tv(R-b)}{b(R-v)}$ oe
					t

Pearson Edexcel - Monday 9 June 2014 - Paper 1 (Non-Calculator) Higher Tier

14.

12	*(a)			M1 for substitution of 77 into the RHS of the formula
		No, temp is 25°C	3	A1 for 25 cao or for 225/9 and 180/9 cao
				C1 (dep on M1) for conclusion (ft) following from working shown
				OR
				M1 for substitution of 20 into LHS of formula and correct process to find F
				A1 for 68 cao
				C1 (dep on M1) for conclusion (ft) following from working shown
	(b)	$F = \frac{9C}{5} + 32$	3	M1 for expansion of the brackets (eg $5 \times F - 5 \times 32$) or an attempt to multiply both sides by 9, or divide both sides by 5 as the first step. M1 (dep) for a correct second step A1 for $F = \frac{9C}{5} + 32$ oe

Pearson Edexcel - Friday 8 November 2013 - Paper 2 (Calculator) Higher Tier

15.

21	(a)	(2x+3)(2x-3)	1	B1 cao
	(b)	$m = \frac{g - 5}{a + 3}$	3	M1 for correct processes to isolate terms in m from other terms M1 for taking m out as a common factor A1 for $m = \frac{g-5}{a+3}$ or $m = \frac{5-g}{-a-3}$

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

18		$3p^2 = y + 4 p^2 = \frac{y + 4}{3}$	$p = \sqrt{\frac{y+4}{3}}$		M1 for clear intention to add 4 to both sides or divide all terms by 3(with at least 3 terms) M1 for clear intention to find the square root from $p^2 = (\text{expression in } y)$ A1 for $p = \sqrt{\frac{y+4}{3}}$ oe (accept \pm a correct root)
----	--	---------------------------------------	----------------------------	--	--

Pearson Edexcel - Monday 4 March 2013 - Paper 2 (Calculator) Higher Tier

17.

14	(a)	$100 = 4 \times 2 \times c$	12.5	2	M1 for correct substitution into formula A1 for 12.5 oe
		$m^{2} = \frac{k+1}{4}$ $4m^{2} = k+1$ $k = 4m^{2} - 1$ or $2m = \sqrt{(k+1)}$ $4m^{2} = k+1$ $k = 4m^{2} - 1$	$k = 4m^2 - 1$	3	M1 for correct method to clear fraction or remove square root sign M1 (dep) for a fully correct method to both clear fraction and remove square root sign A1 for $k = 4m^2 - 1$ or $k = (2m + 1)(2m - 1)$

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

18.

24		2 4 n	4	M1 for intention to multiply both sides by 4+t
24		$t = \frac{3 - 4p}{p + 2}$	-	eg $p \times 4 + t = 3 - 2t$
		,		M1 for intention to correctly move their t terms to one side, and correctly move their other terms to the other side eg $p \times 4 + t - 4p + 2t = 3 - 2t + 2t - 4p$
				M1 for intention to factorise eg $t(p\pm 2)$
				A1 for $t = \frac{3-4p}{p+2}$ oe

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

8	(a)	All II	6y - 15	1	B1 cao
	(b)		4x(2x+y)	2	B2 cao (B1 for $x(8x + 4y)$ or $2x(4x + 2y)$ or $4(2x^2 + xy)$ or $4x(ax + by)$ where a , b are positive integers or $ax(2x + y)$ where a is a positive integer or $4x(2x - y)$)
	(c)	$10t = gh$ $h = \frac{10t}{g}$	$\frac{10t}{g}$	2	M1 for clear intention to multiply both sides of the equation by 10 (eg. ×10 seen on both sides of equation) or clear intention to divide both sides of the equation by g (eg. ÷ g seen on both sides of equation) or $10t = gh$ or $\frac{t}{g} = \frac{h}{10}$ or fully correct reverse flow diagram eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ A1 for $\frac{10t}{g}$ oe

Pearson Edexcel - Wednesday 13 June 2012 - Paper 2 (Calculator) Higher Tier

20.

20	$2d - 2t = 4t + 7$ $2d - 7 = 4t + 2t$ $2d - 7 = 6t$ $\frac{2d - 7}{6}$	$\frac{2d-7}{6}$	3	B1 for $2d - 2t$ or $2t + \frac{7}{2}$ oe M1 for rearranging 4 terms correctly to isolate terms in t e.g. ' $2d^{2} - 7 = 4t + $ ' $2t$ ' or $2d - 7 = 6t$ or $-6t = 7 - 2d$ seen A1 for $\frac{2d - 7}{6}$ oe
----	--	------------------	---	--

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

21	(a)	$P = 3x + \frac{\pi x}{2} = x \left(3 + \frac{\pi}{2} \right)$ $x = \frac{P}{\left(3 + \frac{\pi}{2} \right)}$ OR $2P = 6x + \pi x = x \left(6 + \pi \right)$ $x = \frac{2P}{\left(6 + \pi \right)}$	$x = \frac{P}{\left(3 + \frac{\pi}{2}\right)}$	2	M1 for $x\left(3+\frac{\pi}{2}\right)$ A1 for $x = \frac{P}{\left(3+\frac{\pi}{2}\right)}$ oe OR M1 $2P = x(6+\pi)$ A1 $x = \frac{2P}{(6+\pi)}$ oe SC: B1 for $x = \frac{2P}{3+\pi}$ oe or $x = \frac{P}{6+\pi}$ SC Using $\pi = 3.14$, then B1 for $x = \frac{P}{4.57}$ or $\frac{2P}{9.14}$
----	-----	--	--	---	--

21	(b)	$A = x^2 + \frac{\pi}{2} \left(\frac{x}{2} \right)^2 = \left(1 + \frac{\pi}{8} \right) x^2$	$k = 1 + \frac{\pi}{8}$	3	M1 for $A = x^2 + \frac{\pi}{2} \left(\frac{x}{2}\right)^2$ (condone missing
					brackets around $\frac{x}{2}$) or $A = x^2 + \frac{\pi}{2} \times \frac{x^2}{4}$ oe
					M1 for $A = x^2(1 + \frac{\pi}{8})$ oe or $k = 1 + \frac{\pi}{2} \left(\frac{1}{2}\right)^2$
					A1 cao
					SC B1 for $A = x^2 + \frac{\pi}{2} \times \frac{x^2}{2}$
					SC B2 for $k = \left(1 + \frac{\pi}{4}\right)$

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier

22.

17	(a)	$-10 - 2 \times 3 \times (-5)^2 = -10 - 150$	-160	2	M1 $-10-2 \times 3 \times (-5)^2$ or 75 or 150 or -150 seen A1 cao
	(b)	$y = p - 2qx^{2}$ $2qx^{2} = p - y$ $x^{2} = \frac{p - y}{2q}$	$x = \pm \sqrt{\frac{p - y}{2q}}$		M1 at least one correct process from isolate $2qx^2$, divide by q , or by 2 or by $2q$ M1 (dep on M1) attempt to square root both sides of $x^2 = \frac{p-y}{2q}$, A1 $x = \pm \sqrt{\frac{p-y}{2q}}$ oe condone omission of \pm

Pearson Edexcel - Monday 6 June 2011 - Paper 3 (Non-Calculator) Higher Tier

23.

23	t(k-2) = k $tk-2t = k$ $tk-k = 2t$ $k(t-1) = 2t$	$k = \frac{2t}{t-1}$	4	M1 for attempt to multiply LHS by $(k-2)$ or sight of $t(k-2)$ or $tk-2$ (ignore RHS) M1 for attempt to subtract k from LHS or sight of $tk-k$ (ignore RHS) or attempt to subtract tk to give $-2t = k - tk$ (ignore LHS) M1 for attempt to factorise for k e.g. $k(t-1)$ or $k(1-t)$ A1 for $\frac{2t}{t-1}$ or $\frac{-2t}{1-t}$ oe
----	--	----------------------	---	---

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

24.

13	$t - 2 = \frac{v}{5}$ or $5t = v + 10$	v =5(t - 2)	2	M1 subtracting 2 from each side or multiplying each side by 5 A1 for $v = 5(t - 2)$ or $v = 5t - 10$ (multiplication signs may be present) SC: If no marks scored, award B1 for $v = 5t - 2$ oe or $v = t - 10$ or $v = t - 2 \times 5$ oe
----	---	-------------	---	---

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

26 (a))	$P = \frac{k}{V}$: 5 = $\frac{k}{8}$; $k = 40$	$P = \frac{40}{V}$	3	M1 for $P \propto \frac{1}{V}$ or $P = \frac{k}{V}$, k algebraic
					M1 for subs $P = 5$ and $V = 8$ into $P = \frac{k}{V}$
					A1 for $P = \frac{40}{V}$
(b))	$P = \frac{40}{2}$	20	1	B1 ft on k for $P = \frac{k'}{V}$
(-)	, 	$P = \frac{3}{2}$			B1 ft on k for $P = \frac{\kappa}{V}$

Pearson Edexcel - Friday 11 June 2010 - Paper 4 (Calculator) Higher Tier

26.

17	$r^2 = \frac{A}{3}$	$A = 3r^2$	2	M1 for an attempt to square both sides $r^2=\frac{A}{3}$ or an attempt to multiply both sides by $f3$ A1 cao
----	---------------------	------------	---	--

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

27.

16		5q + 5p = 4 + 8p $5q = 4 + 8p - 5p$ $5q = 4 + 3p$ $q = 4 + 3p$ 5	$q = \frac{4+3p}{5}$	3	M1 for expansion of bracket or $5q + 5p$ or each term $\div 5$ M1 for correct process to $aq = bp + c$, a , b and c numbers A1 $q = \frac{4+3p}{5}$ oe [SC B2 for ambiguous answer eg $4+3p/5$]
----	--	--	----------------------	---	---

OCR GSCE – Thursday 8 November 2018 – Paper 5 (Non-Calculator) Higher Tier

28.

9		$y = [\pm]\sqrt{x - 7}$	2	M1 for $x - 7 = y^2$ or for answer $[\pm]\sqrt{x-7}$ or for correct step to answer after incorrect first step shown	e.g. answer $y = \sqrt{x+7}$ after 1st step is $y^2 = x+7$
				first step shown	= x + 7

OCR GSCE – Wednesday 8 November 2017 – Paper 6 (Calculator) Higher Tier

1	(a)	200	2	B1 for 50 or 150 soi	Eg. answer 500 or 275 with (5 × 10) + seen
	(b)	$a = \frac{2(s - ut)}{t^2} \text{oe}$	2	M1 for $s - ut = \frac{1}{2}at^2$	

OCR GSCE – Thursday 8 June 2017 – Paper 5 (Non - Calculator) Higher Tier

30.

*5	(a)		$\frac{y+3}{7}$ or $\frac{-y-3}{-7}$ final answer	2	M1 for $y + 3 = 7x$ or $\frac{y}{7} = x - \frac{3}{7}$ or for correct FT completion to answer after incorrect first step has been shown	For M1, accept the 'negative terms' versions
	(b)	(i)	x(x-y) final answer	1		Condone omission of final bracket Condone $[1]x([1]x - [1]y)$
		(ii)	(x + 6)(x + 2) final answer	2	M1 for $(x + a)(x + b)$ where $ab = \pm 12$ or $a + b = \pm 8$ or for $x(x + 6) + 2(x + 6)$ seen or $x(x + 2) + 6(x + 2)$ seen	a, b integers For 2 marks, condone solutions after correct factors For 2 marks or M1, condone omission of final bracket

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

	Alternative method 1				
	ac = b + 5c	M1	oe fraction eliminated		
	ac - 5c = b or $c(a - 5) = bor \frac{b}{a - 5}$	M1dep	oe terms in c collected		
	$c = \frac{b}{a - 5}$	A1			
	Alternative method 2				
15	$a-5=\frac{b}{c}$	M1			
	$\frac{1}{a-5} = \frac{c}{b} \text{ or } \frac{a-5}{b} = \frac{1}{c}$ or $c(a-5) = b$ or $\frac{b}{a-5}$	M1dep			
	$c = \frac{b}{a - 5}$	A1			
	Additional Guidance				
	$c = \frac{b}{a-5}$ in working lines with $\frac{b}{a-5}$ on answer line			M1M1A1	

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier

32.

8	$x = \frac{y+2}{3}$	B1	
---	---------------------	----	--

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier

33.

	y(x-4) = 2x + 3	M1	x(y-4) = 2y + 3
	yx - 4y = 2x + 3	M1dep	xy - 4x = 2y + 3
26	yx - 2x = 4y + 3 or $x(y - 2) = 4y + 3$ or $x = \frac{4y + 3}{y - 2}$	M1dep	xy - 2y = 4x + 3 or $y(x - 2) = 4x + 3$
	$\frac{4x+3}{x-2}$	A1	oe Must be in terms of x
	Ado	Buidance	
	Ignore any attempt to give the domain		

AQA GSCE – Thursday 7 June 2018 – Paper 2 (Calculator) Higher Tier

	5 – 2 <i>x</i>	B1	may be implied		
	3(x-1) + 7 or $3x + 4$	M1	oe ignore incorrect expansion if $3(x-1) + 7$ seen		
28(a)	9+x	A1			
	Additional Guidance				
	Working out 2f(x)			В0	
	Working out $g(x + 1)$	MO			

	Alternative method 1				
	x - 7 = 3y or $y - 7 = 3x$	M1	allow $x - 7 = 3g$ or $g - 7 = 3x$		
	$\frac{x-7}{3}$ or $\frac{y-7}{3}$	A1	oe allow $\frac{g-7}{3}$		
	$-1.4 \text{ or } -\frac{7}{5}$	A1	A1 oe		
	Alternative method 2				
28(b)	3(2x) + 7	M1	oe		
	x = 3(2x) + 7 or $x = 6x + 7$	A1	oe equation		
	$-1.4 \text{ or } -\frac{7}{5}$	A1	oe		
	Add				
	Beware				
	-3x - 7 = 2x leading to -1.4			M0A0A0	

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier 35.

	Alternative method 1					
	v - u = at	-at = u - v	M1			
	$t = \frac{v - u}{a}$	$t = \frac{u - v}{-a}$	A1	oe		
	Alternative method 2					
	$\frac{v}{a} = \frac{u}{a} + t$		M1			
	$t = \frac{v}{a} - \frac{u}{a}$		A1	oe		
9(a)	Additional Guidance					
	$t = (v - u) \div a$				M1A1	
	$v - u = at$ and $t = v - u \div a$				M1A0	
	$\frac{v-u}{a}$ or $\frac{u-v}{-a}$ or $\frac{v}{a} - \frac{u}{a}$				M1A0	
	$a = \frac{v - u}{t}$ with or without working				M1A0	
	$t = v - u \div a$				M0A0	
	$t = \frac{v + u}{a}$				M0A0	

	(Speed) m/s or ms ⁻¹ (Acceleration) m/s ² or ms ⁻² or m/s/s	B2	B1 for one correct or two mutually consisten and km/h ² Accept mps for m/s and n	_	
	Additional Guidance				
9(b)	Allow units given in words eg metres per second metres per second squared or metres per second per second				
	m/s ⁻¹ (speed)			В0	
	m/s ⁻² (acceleration)			В0	

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier

36.

3	$w = \frac{y}{2x}$	B1		
	Additional Guidance			

AQA GSCE – Sample Paper 2 (Calculator) Higher Tier

19	x 3	B1	
----	--------	----	--